Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(pentane-1,5-diammonium) decaiodotriplumbate(II)

David G. Billing* and Andreas Lemmerer

School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, 2050, South Africa
Correspondence e-mail: dave@aurum.wits.ac.za

Received 9 March 2004
Accepted 30 March 2004
Online 30 April 2004
The title compound, $\left\{\left(\mathrm{NH}_{3} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}_{3}\right)_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right]\right\}_{n}$, crystallizes as an organic-inorganic hybrid. As such, the structure consists of extended chains of $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]_{n}^{4 n-}$ ions extending along [111]. The asymmetric unit contains two independent Pb atoms: one is in a general position and the other is on an inversion centre. Each Pb atom is octahedrally coordinated by six iodide ions and exhibits both face- and edge-sharing with adjacent atoms in the inorganic chain. The organic counter-ion, viz. pentane1,5 -diammonium, lies in channels formed by the chains and interacts with these chains via $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding.

Comment

In recent years, a significant number of organic-inorganic hybrid materials based on metal-halide units have been prepared and studied [for reviews, see Papavassiliou (1997) and Mitzi (1999)]. Haloplumbates, in particular, have demonstrated a propensity for forming a variety of crystalline structures by self-assembling from suitable solution mixtures. It has been shown that these structures can vary considerably, ranging from systems based on isolated molecules, to those containing infinite chains, as in $\left(\mathrm{Me}_{4} \mathrm{~N}\right)\left[\mathrm{PbI}_{3}\right]$ (Contreras et al., 1983), right up to two- or three-dimensional networks (Mitzi, 1999). The lead iodide octahedra can be connected in one of three ways, viz. face-sharing between two equatorial halides and one axial halide, edge-sharing between two equatorial halides, and corner-sharing via a single halide. It is also possible to have combinations of the various types of sharing in one chain, as in $\left[\mathrm{Na}(\mathrm{DMF})_{3}\right]_{4}\left[\mathrm{~Pb}_{6} \mathrm{I}_{16}\right]$ (DMF is dimethylformamide) and $\left[\operatorname{PrN}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3} \mathrm{NPr}\right]\left[\mathrm{Pb}_{2} \mathrm{I}_{6}\right]$, in which the octahedra simultaneously share common faces, edges and vertices (Krautscheid et al., 2001). The chains formed by the octahedra can be described by the shorthand notation $\left(f_{m} e\right)_{n}$ for m adjacent face-sharing octahedra, f, connected by octahedra sharing an edge, denoted e. Structures with $m=3$ have been synthesized for lead iodide (Krautscheid \& Vielsack, 1997; Maxcy et al., 2003) and tin iodide (Lode \& Krautscheid, 2001) octahedra. The case with $m=1$ contains PbI_{6} octahedra that
share a face with PbI_{5} square pyramids, which in turn share an edge.

Pentadiamine has previously been incorporated into the layered perovskite structure type. For example, single-crystal structures of $\left(\mathrm{NH}_{3} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NH}_{3}\right) \mathrm{Cu} X_{4}(X=\mathrm{Cl}$ and Br ; Garland et al., 1990) have been determined. In general, the hybrid perovskite family displays structural phase transitions resulting from conformational changes within the amine groups between the layers, as well as the slipping of layers with respect to one another. The temperatures at which the phase changes occur are dependent on the length of the chain, as can be seen for $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{3}\right] \mathrm{CdCl}_{4}(n=3,4$ and 5; Kind et al., 1981).

We present here the crystal structure of the title compound, (I), an $m=3$ case, which contains $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]_{n}^{4 n-}$ chains extending approximately along [111], with the pentadiammonium ion as counter-cation (Fig. 1). The asymmetric unit contains two crystallographically independent Pb atoms, viz. atoms Pb 1 and Pb 2 . Each face-sharing monomer unit consists of two Pb 2 octahedra and one Pb 1 octahedron, where the central Pb 1 octahedron is connected to the Pb 2 octahedra by shared faces. The Pb 2 octahedra are linked via edge-sharing at both ends to adjacent monomers. The overall repeat pattern can be represented as $\left(f_{2} e\right)_{3}$ (Fig. 2).

Atom Pb 1 is located on a centre of inversion, chosen for convenience as that at the centre of the unit cell, and is bonded to three unique halide atoms, viz. I1, I2 and I3, which then complete the full octahedron through the inversion centre. At the centre of a quadrilateral formed by atoms $\mathrm{Pb} 2, \mathrm{I} 4, \mathrm{~Pb} 2 A$ and $\mathrm{I} 4 A[\mathrm{~Pb} 2 A$ and $\mathrm{I} 4 A$ are at the symmetry position $(-x,-y$, $-z$); Fig. 1] is a second inversion centre, chosen for convenience as the cell origin. Atom Pb 2 is bonded to four unique

Figure 1
The asymmetric unit of (I) and some adjacent atoms, showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Atoms labelled with the suffixes A, B and C are at the symmetry positions $(-x,-y,-z),(1-x, 1-y, 1-z)$ and $(1+x, 1+y$, $1+z$), respectively.

Figure 2
An illustration of the $\left(\mathrm{PB}_{3} \mathrm{I}_{10}\right)_{n}^{4 n-}$ chain.

Figure 3
The crystal packing of (I), viewed along [111], showing the pseudohexagonal packing and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding (dashed lines).
halides, the extra halide, I4, being responsible for the edgesharing between the Pb 2 octahedra. This second inversion centre then generates the second I4 halide involved in edgesharing. The metal-halide bond distances are very similar, possibly because of the lower strain imposed by the simpler sharing. Atoms I1, I2 and I3 participate in the face-sharing between the Pb 1 and Pb 2 octahedra. Axial atom I 5 is the only halide not involved in any bonding to adjacent octahedra and has the shortest $\mathrm{Pb}-\mathrm{I}$ distance $[3.1221$ (12) \AA].

Atom Pb 1 has a more regular coordination geometry, as it lies on an inversion centre, which ensures that all trans angles are exactly 180°; the Pb 1 octahedron shares trans faces with the two adjacent Pb 2 octahedra. Atom Pb 2 , in contrast, has a more distorted environment, with all cis and trans angles different (Table 1).

One unique inorganic chain runs through the unit cell along the body, diagonally from $(0,0,0)$ to $(1,1,1)$. The Pb 1 octahedron is located at the centre of the unit cell, with the two Pb 2 octahedra located along the body diagonal and related by the inversion centres at $(0,0,0)$ and $(1,1,1)$. In the crystal
structure, the cations occupy channels that run parallel to the anion chains. Each diammonium cation is hydrogen bonded to three different chains in a pseudo-trigonal pattern. One anion chain lies along the body diagonal and the other two run through the corners of the unit cell in a pseudo-hexagonal pattern (Fig. 3).

Both ammonium groups on the cation form three hydrogen bonds to I atoms of the anion chains (details are given in Table 2). Ammonium atom N1 connects three chains, atom I5 being a bifurcated acceptor. The ammonium group containing atom N 2 bonds to two chains. It connects via a short and a long hydrogen bond to atoms I2 and I4, respectively, and to a second chain via the $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{I} 1(-x, 1-y, 1-z)$ interaction.

The pentadiammonium ion exhibits two types of conformational arrangement between the four possible torsion angles. There are antiperiplanar $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 3-$ $\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5$ angles of $174.0(15)$ and $-179.2(14)^{\circ}$, and synclinal (gauche) $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ angles of 59 (2) and $-71(2)^{\circ}$.

Experimental

$\mathrm{PbI}_{2}(0.125 \mathrm{~g}, 0.271 \mathrm{mmol})$ and $\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{~N}_{2}(0.031 \mathrm{~g}, 0.507 \mathrm{mmol})$ were added to $\mathrm{HI}(3 \mathrm{ml})$ and the mixture was heated until all the components had dissolved. The solution was allowed to cool to room temperature, whereupon yellow plate-shaped crystals formed. A single crystal suitable for X-ray diffraction analysis was selected and studied. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{32} \mathrm{I}_{10} \mathrm{~N}_{4} \mathrm{~Pb}_{3}$: C $5.72, \mathrm{H} 1.54, \mathrm{~N}$ 2.67%; found: C 5.74, H 1.63 , N 2.73%.

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right]$
$M_{r}=2098.97$
Triclinic, $P \overline{1}$
$a=8.8543$ (15) \AA
$b=11.1457$ (19) \AA
$c=11.5725$ (19) \AA
$\alpha=109.624$ (3) ${ }^{\circ}$
$\beta=106.173$ (3) ${ }^{\circ}$
$\gamma=107.339(3)^{\circ}$
$V=931.4(3) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=3.742 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 849 \\
& \quad \text { reflections } \\
& \theta=2.6-25^{\circ} \\
& \mu=21.82 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.30 \times 0.24 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: by integration (XPREP in SAINT-Plus; Bruker, 1999)
$T_{\text {min }}=0.026, T_{\text {max }}=0.643$
5061 measured reflections

Refinement

3257 independent reflections 2593 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=25^{\circ}$
$h=-10 \rightarrow 7$
$k=-13 \rightarrow 13$
$l=-11 \rightarrow 13$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.25 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.19 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00170 (19)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Pb} 1-\mathrm{I} 2$	$3.1998(11)$	$\mathrm{Pb} 2-\mathrm{I} 4^{\mathrm{i}}$	$3.1718(12)$
$\mathrm{Pb} 1-\mathrm{I} 3$	$3.2226(10)$	$\mathrm{Pb} 2-\mathrm{I} 1$	$3.3102(12)$
$\mathrm{Pb} 1-\mathrm{I} 1$	$3.2275(10)$	$\mathrm{Pb} 2-\mathrm{I} 2$	$3.3187(12)$
$\mathrm{Pb} 2-\mathrm{I} 5$	$3.1221(12)$	$\mathrm{Pb} 2-\mathrm{I} 3$	$3.3222(11)$
$\mathrm{Pb} 2-\mathrm{I} 4$	$3.1680(10)$		
$\mathrm{I} 44^{\mathrm{i}}-\mathrm{Pb} 2-\mathrm{I} 1$			$169.37(3)$
$\mathrm{I} 5-\mathrm{Pb} 2-\mathrm{I} 2$	$168.40(3)$	$\mathrm{I} 4-\mathrm{Pb} 2-\mathrm{I} 3$	

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{I} 3^{\text {i }}$	0.89	3.02	3.806 (15)	149
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 5^{\mathrm{ii}}$	0.89	2.93	3.669 (16)	142
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{I} 5^{\text {iii }}$	0.89	2.92	3.672 (15)	143
N5-H5A \cdots I $1^{\text {iv }}$	0.89	2.79	3.668 (14)	169
N5-H5B \cdots I2	0.89	2.87	3.531 (14)	132
N5-H5C \cdots I4	0.89	3.31	4.001 (16)	136

Symmetry codes: (i) $-x,-y,-z$; (ii) $x-1, y, z-1$; (iii) $-1-x,-y,-z$; (iv) $-x, 1-y, 1-z$.

All H atoms were allowed for in idealized positions in the ridingmodel approximation $\left[\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.89 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})\right]$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: XPREP in SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97
(Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1746). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Contreras, J. G., Seguel, G. V., Ungerer, B., Maier, W. F. \& Hollander, F. J. (1983). J. Mol. Struct. 102, 295-304.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Garland, J. K., Emerson, K. \& Pressprich, M. R. (1990). Acta Cryst. C46, 16031609.

Kind, R., Plesko, S., Günter, P., Roos, J. \& Fousek, J. (1981). Phys. Rev. B Condens. Matter, 23, 343-350.
Krautscheid, H., Lode, C., Vielsack, F. \& Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099-1104.
Krautscheid, H. \& Vielsack, F. (1997). Z. Anorg. Allg. Chem. 623, 259-263.
Lode, C. \& Krautscheid, H. (2001). Z. Anorg. Allg. Chem. 627, 1454-1458.
Maxcy, K. R., Willett, R. D., Mitzi, D. B. \& Afzali, A. (2003). Acta Cryst. E59, m364-m366.
Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1-121.
Papavassiliou, G. C. (1997). Prog. Solid State Chem. 25, 125-270.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

